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ABSTRACT

In a previous work [1], we presented the demonstration of the relationship between the
activation energy value and the square of the temperature, and the slope of a non-isothermal
thermogram. We present in this work, following similar arguments, a coherent demonstration
with conclusions, that the relationship between E, and the square of the temperature occurs
under isothermal conditions, too. It can be demonstrated too, that E, depends on the relative
slope of at least two isothermal runs. We conclude that there is complete independence of the
E, and the g(a) value for the isothermal conditions. From the results, a simple
graphical-numerical method, based on isothermal thermogravimetry, is proposed to solve
and calculate the kinetic parameters E,, K(7T'), and K and the kinetic model in a very easy
and accurate way.

INTRODUCTION

The determination of the kinetic parameters (E,, K(T), K,), using ther-
mogravimetry was carried out using the general equation for reactions in the
solid state [2]

g(e)= [ "K(T) dr

This equation can be solved under isothermal conditions as
gla) = K(T)t

Solving this equation for each g(a) and the possible values of n, a series of
values of K(T') is found. Then, through the Arrhenius law it is possible to
find a value of E, for each g(a) and order. In order to find the kinetic
mechanism, the isothermal E, values are usually compared with the non-
isothermal E, values and the model with best agreement is proposed. Done
in this way, the calculation is long and needs computational aid. A detailed
study of the results obtained using this method, with the main g(«) (nuclea-
tion, nucleation—growth, difussion models) (Table 1), offers apparently
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TABLE 1

Kinetic functions g(a), in their integral form

Mechanism gla) Designation

Nucleation controlled

Power law o n =1: zero order

n=05:D1

Growth controlled 1-A-a)}""j/0~n) n = (: zero order
n=1/2: R2
n=2/3: R3
n=1:F1

Nucleation - growth controlled

Avrami-FErofeev [—In(1 — a)]/" n=1:F1
n=2 A2
n=73: A3

Diffusion controlled

One-dimensional a? D1

Two-dimensional a+(l—-a)In{l—a) D2

Three-dimensional [1-a-a)?}? D3

Three-dimensional 1-2a/3)—(1-a)*? D4

surprising results to us: the E, values obtained are virtually independent of
the equation and order used. These results have been checked out by us with
several products [3]. Criado et al. [4] reach the same conclusions using
semiempirical arguments. This coincidence of results has led us to try the
general resolution of the method used till now, in order to give a mathemati-
cal demonstration of these results. In this work we develop several expres-
sions that permit us to check out the relationship between the E, and the
square of the temperature of the process (already demonstrated for non-iso-
thermal conditions), and the relationship between E, and the relative slope
of at least two isothermal measurements. The same expressions show us, that
the E, is independent of g(a) (and consequently of the kinetic model), while
K(T) and K, are completely dependent on g(a).

RESULTS AND DISCUSSION

For the resolution of the calculations we have used the two extreme points
of the region usually considered in kinetic work, that is a = 0.2 and a = 0.8.

Relationship between E, and At

Figure 1 shows us two idealized isothermal thermograms, for the tempera-
tures 7; and 7, and their corresponding A¢; and Ar,.



Fig. 1. Idealized isothermal runs at 73, 7. (See text.)

According to the general equation g(a) = K(T')¢, we can write
glay2) = K(Th)1,
gags) = K(T;)t,
and
glag,) = K(Th)t.
g(ags) = K(Ty)t4
K(T;) can be obtained from (1) and (2), and K(7T;) from (3) and {(4)
K(Ty) =g(ags) —glags)/(t,—t,)

K(T;) = g(ags) — g(ags)/(ta— 1)

By deriving the ratio (5) /(6), we obtain the important relation
K(T)/K(Ty) = Aty /Aty

Applying the Arrhenius law at both isothermals, we obtain

In K(T;)=In Kg— E,/RT, and In K(T,)=1n K,— E,/RT,
Substracting both equations, we obtain

In[K(T,)/K(T;)] = E/R(1/T, - 1/T;)

}Thermogram at Ty

}Thermogram at T,

Rearranging and substituting K(77)/K(T,) by their value {7), results

E,=RT\T, In(At,/A1,)/(T, — T)
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This equation shows us all the conclusions that have been indicated
before: E, depends on the product T:7T,, that is, on the square of the
temperature. It shows, too, the relationship between E, and the natural log
of the ratio of the Az values between a = 0.2 — 0.8 of the thermograms used.
There is no reference to g(a) in the determination of the E, value. The



Fig. 2. Two systems of two idealized parallel thermograms with the same As, at different
temperatures.

expressions (5) and (6) show that the only parameters dependent on g(«) are
K(T) and K,,.

Expression (8) can be presented in different ways that will let us make
new considerations.
Rearranging, we obtain

Aty = Aty e( E,(Ty~ T,)/RT\T;) (9)

that lets us calculate At easily for a new T, from the previously calculated
E, value and from an isothermal run of reference.

From (9), we obtain
In At,=(In ¢, — E,/RT,) + E,/RT, (10)

that demonstrates that for a given E,, the reacting time at different
temperatures shows a logarithmical relation versus 1/7, (In ¢, — E,/RT; isa
constant value).

Equation (10) can be obtained by substitution of (5) in the Arrhenius law.

Relation between the E, and the T

If we present now, two isothermal runs at the temperatures 7}, 7, and
two isothermal runs, parallel at the temperatures T;, T, (Fig. 2), by applying
eqn. (8), these new expressions are obtained.

E, = Constant X 71T, and E,, = Constant X T,T,
in which the constant value is the same (dependent only on their AT, Az

that will be equal because they are parallel systems). By deriving the ratio of
both expressions we obtain

Eaz = EaITST;I/T’lTZ
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This expression is identical to eqn. (7) or our previous work [1] for the
non-isothermal conditions, and it demonstrates the coherence of the system
presented.

GENERAL RESOLUTION OF E, IN ISOTHERMAL CONDITIONS

From eqn. (10), may be written
In At=FE,/RT + a, where ay,=In t, — E,/RT;

Plotting In At versus 1/7, for the different isothermal measurements we
obtain from the slope of the plot, the E, value, while

ag = ln{ [g(ao,s) - g(ao.z)]/KO}

Now, we have found the E, value, but we still have to determine all the
other parameters and kinetic characteristics, that is, K(7), K, and the
accurate model.

For any sort of isothermal run, we have

g8(ao,) =K(T )2, and glegs) = K(T)tgs
Deriving the ratio, we obtain

8(ao2)/8(aos) =292/ (12)

From the different equations of the Table 1, we can obtain the corre-
sponding values to the ratio of the g(a) mentioned in (12). From the value

TABLE 2

Values of the ratio g(a,)/g(@p ) and difference g(ay )~ g(ag;), for the kinetic functions of
Table 1

Equation 8( a2}/ 8(aps) glagg)—g(ag,)
Zero order 0.25000 0.60000
R2 0.19098 0.89443
R3 0.17265 1.03054
F1 0.13865 1.38629
A2 0.37235 0.79626
A3 0.51757 0.56536
D1 0.06250 0.60000
D2 0.04494 0.45663
D3 0.02981 0.16725
D4 0.03925 0.11978
Power law

n=05 0.06250 0.60000
n=10 0.25000 0.60000

n=15 0.39685 0.51978
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Fig. 3. Plot of g(ay,)/8(ags) vs. 8(ags) —8(ag,), for the principal kinetic models.

192/ 1o (that has to be constant for any isothermal run of a product), and
the best agreement between the possible theoretical values and the real
values, the assignation of the kinetic model can be tried, and the K(T')
values as indicated in [5]. In the Table 2, we have listed the values of the
ratio and the difference of g(a), and once plotted becomes the Fig. 3. The
plot shows that for many values of #,,/¢,4, there is the chance of assigning
more than one model. This ambiguity can be solved by proving which of the
K(T) and g(«) values obtained graphically, fits better with our experimental
thermograms. Finally, the K, value, is found from the Arrhenius law.

THEORETICAL TESTING OF THE METHOD

To test rigorously our proposal, we have made two theoretical isothermal
curves (for the points a = 0.2 and 0.8), for all g(a) of the Table 1, from the
arbltrary data given: T, =475 K, T, =525 K, E, =25000 cal, K,= 10"
min~!. The corresponding K(T') are obtained from the Arrhenius law, and
are indicated too, in the Table 3. Applying the eqn. (8) to the pairs of A#,
and Az, values, we obtain as was foreseen, the E, value of 25000 cal,
independent of the kinetic model. As mentioned above, we test that the ratio
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TABLE 3

Fundamental values of 1, for two isothermal thermograms, calculated from the principals
g(@); the data used are: E, =25 kcal mol™!, K,=10"" min~!, T; =475 K, T, =525 K
(E, * = calculated value from eqn. (8) and At(475)/A1(525) for each model)

Equation toa og At 202 Losg A: E,*
Zero order 6.0463 25.8498 19.3874  0.5179 2.0717 1.5538 25.000
R2 6.8226 35.7236 28.9010  0.5468 2.8630 23162  25.000
R3 6.9487  40.2478 332992  0.5569 3.2256 2.6687 25.000
F1 7.2103 52.0046  44.7943 05779  4.1678 3.5900  25.000
A2 15.2637  40.9925 25.7288 1.2233 3.2853 2.0620  25.000
A3 19.5988 37.8668 18.2681 1.5707  3.0348 1.4641 25.000
D1 1.2925 20.6799 19.3874  0.1036 1.6574 1.5538 25.000
D2 0.6942 15.4489 14.7547  0.0556 1.2381 1.1825 25.000
D3 0.1660 5.5702 5.4042  0.0133 04464 04331 25.000
D4 0.1581 4.0284 3.8703  0.0127 0.3228  0.3102 25.000
Power law

n=205 1.2925 20.6799 19.3874  0.1036 1.6574  1.5538  25.000
n=10 6.0463 25.8498 19.3874  0.5179  2.0717 1.5538 25.000
n=15 11.0506 27.8459 16.7952  0.8856  2.2316 1.3460  25.000

T=475K K(T)=3.0948x10"2 T=525K K(T)=0.38616

to2/tos 18 constant for each g(a), independent of T and the same as the
value of g(ag,)/8(ags), indicated in Table 2.

PRACTICAL TESTING OF THE METHOD

The solid phase thermal deaquation-anation of the compounds
[M(NH,);H,0][Co(CN)¢] has been investigated by means of the method
proposed in this work. The results of the isothermal calculations, previously
published [4], are shown in the Table 4. In Table 5, the experimental values
of T, ty,, tog, At and t,/1,4 are shown for the different isothermal runs of
these three products. Plotting the In Ar values versus 1/7, the Fig. 4 is
obtained. The plot parameters are indicated in Table 6.

The E, value found from graph 3, demonstrates the high accuracy of this
method, compared with the rigorous calculation of all the g(«) and orders.

For M = Co, three mechanisms are possible (ratio near 0.17), and for Rh
and Ir two mechanisms are possible. To choose the kinetic model, it is
necessary to calculate ¢y, and ¢;,; from the general expression ¢=
g(a)/K(T), with the possible g(«) and K(T') (see Table 7).

With this calculation (very short, that can be made with a pocket
calculator), the kinetic model that presents a best agreement with the
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TABLE 5

Fundamental values for the experimental isothermal runs for the compounds [M(NH,),-
H,0])[Co(CN),]

M T(K) o2 tog LY, 192/ tos
Co 438 3.25 19.68 16.43 0.1652
440.5 2.70 16.80 14.10 0.1607
443 2.10 12.50 10.40 0.1680
445.5 1.90 11.10 9.20 0.1712
448 1.70 9.30 7.60 0.1828
Rh 443 1.14 5.31 4,17 0.2147
445.5 1.38 5.18 3.80 0.2657
448 1.44 4.68 3.24 0.3075
450.5 1.15 3.66 2.51 0.3142
453 1.10 3.26 2.16 0.3374
Ir 448 2.36 5.09 2.73 0.4644
450.5 2.14 4.55 2.41 0.4698
453 1.89 3.99 2.10 0.4734
455.5 1.66 3.52 1.86 0.4716
458 1.55 3.21 1.66 0.4825

experimental value of the ratio ¢,,/145 is assigned. Table 8 shows the values
obtained by this method and the comparison with the values previously
published. The comparison of the results with the experimental values
(Table 5), shows the greater exactitude of the new calculation.

Inat

25| M= Col111)

15r M =RR{1I1)

M= 1IN

i i

2.2 222 224 238 /T 10°

Fig. 4. Plot of In Ar vs. 1/T (eqn. (10)), for the compounds [M(NH,)H,0J{Co(CN)]. The
slope gives the E, value.
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TABLE 6

Parameters obtained from the plots In ¢ vs. 1/T, corresponding to Fig. 4, and E, value
derived from a,

M = Co(I1I)

a, =15.4544 r?=0.9922

ap= —32.481 E,=128.3kJ mol !
M = Rh(III)

a, =13.8603 r?=0.9882
ap=—29.814 E,=115.1kJ mol 1
M = Ir(111)

a, =10.2411 r? =0.9996
ag=—21.857 E,=85.0kJ mol™*
TABLE 7

K(T) and K, values for [M(NH,)sH,O){Co(CN),], obtained in this work (see comparison
with Table 4)

T(K) M=Co M=Rh M=Ir

K(T) In K, KM In K, K(T) In K,
438 7.824x1072 28.641 - - -~ -
440.5 9117x107? 28.593 - - - ~
443 0.1236 28.700 0.2313 25.729 - -
445.5 0.1397 28.626 0.2538 25.646 - -
448 0.1692 28.624 0.2977 25.632 0.2429 17.351
450.5 - - 0.3843 25.716 0.2751 17.394
453 ~ - 0.4465 25.696 0.3158 17.361
455.5 ~ - - - 0.3565 17.358
458 - - - - 0.3995 17.350
TABLE 8
Fundamental values of ¢ for the isothermal runs of [M(NH;);H,0][Co(CN),] 2
M T(K) ¢, 135 Ar* 152/t 183 133 Agr> 133 /tos

Co 438 334 1977 1643  0.1689 618 2306 16.88  0.2680
4405 287 1697 1410 0.1691 522 1949 1427 0.2678
443 212 1252 1040 0.1693 400 1492 1092 0.2682
4455 187 11.07 9.20 0.1689 346 1290 944  0.2682
448 1.55 9.15 7.60  0.1694 287 10.70 7.83  0.2682

Rh 443 1.67 5.84 417 0.2860 1.56 5.83 427 02676
4455 152 5.32 380 0.2857 1.45 5.41 396 0.2680
448 1.30 4.54 324 0.2863 1.24 4.62 338 0.2684
4505 101 3.52 251 0.286% 0.95 3.54 259 02684
453 0.87 3.03 216  0.2871 0.81 3.01 220 0.2691

Ir 448 245 5.18 273 04730 2.60 5.32 272 0.4887
4505 216 4.57 241 04726 231 474 243 04873
453 1.88 3.98 210 0.4724 2.05 420 215 0.4881
4555 1.67 3.53 286 04731 1.74 3.58 1.84  0.4860
458 1.49 3.15 1.66 0.4730 1.57 3.22 1.65 0.4876

2 * This work. ** Previously calculated values. ** This work. The comparison of the values
obtained in this work with those given in Table 5, shows the greater accuracy of our new
method.
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CONCLUSIONS

The method presented lets us calculate, in an easy and accurate way, the
kinetic parameters E,, K(T), K, and the kinetic model, in isothermal
conditions. The main advantage of this system is that it permits the
resolution, in just a few minutes and with a pocket calculator, instead of the
calculation with computers that is used in the classical system. It onily
requires the measurements of two experimental points. It permits us to
control the reaction if the measurements are correct while making the runs,
by the control of the constant value ¢,,/75.

It is demonstrated that there is non dependence of E, and g(a). It is
corroborated that the comparison with a non-isothermal run, is not neces-
sary to determine the kinetic model. It is evident that the kinetic parameters
can be calculated with two isothermal runs or with an isothermal run (that
gives the correct g(a)), and another non-isothermal run (see ref. 1).
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